VA

.
s LonLuamos

LA-UR-14-26771

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Review of “SClib, a hack for straightforward embedded C functions in
(Python”

Certik, Ondrej

Public review of a journal paper

2014-08-28

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for

the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Review of “SClib, a hack for straightforward embedded C
functions in (I)Python”

Paper available at: https://github.com/euroscipy/euroscipy_proceedings/pull/39
Commit that was reviewed: b7257d4dd240d9cd008260c68f13a7e47f79e3a2

The authors present a simple library SClib for creating Python wrappers to C functions. From the user
perspective, one uses C macros to declare how things should be wrapped on the C level, and then SClib takes
care of the rest. The authors then provide two applications of SClib: radial Schrodinger eigensolver and control
engineering application.

The second control engineering application does not have enough numerical details in order to reproduce the
graphs, but the goal of that section is to provide users with a high level overview of how SClib can be used in
control engineering (to efficiently evaluate derivatives and other functions) --- for that purpose the level of
detail seems sufficient.

The first application in quarkonium physics contains enough detail in order to reproduce most results. Using
the program dftatom described in [1], | have verified that the energies in Table | are correct to all printed digits.
| have created an IPython Notebook, available at [2], that uses the Python interface to dftatom and | am
providing it as part of this review, so that it is clear exactly how the results were obtained.

Citing from the abstract, the goal of this first application is to “efficiently solve the Schrédinger equation for
bounds states” and drive the calculation in IPython (Notebook) so that one can easily manipulate the solutions
and visualize results in an interactive environment, without sacrificing speed. Table | shows time comparisons
of various radial Schrédinger solvers.

In order to asses the claim whether the speed was sacrificed or not, the authors should compare against other
codes that people have used in literature. One could start for example with the list of solvers provided in Table
1 in [1]. In order to get a sense of this, | calculated the four states in Table | using dftatom [1], and with
optimized mesh for this problem it seems to be more than 10,000 times faster, i.e. four orders of magnitude.
The calculation, plots, and timings are provided in the Notebook [2].

How is the radial mesh determined in the manuscript? l.e. do the timings in Table | include a single fixed mesh
calculation (just like it is provided for dftatom in [2]), or does it include adaptive mesh refinement until the
solution is converged? In order to make fair comparison with dftatom, one needs to make sure to either: (1)
both use the same fixed mesh, or (2) both determine the mesh adaptively.

Even though dftatom in [1] is using a shooting method and bisection, just like the authors used in this paper,
one could argue that it is implemented in a more efficient way than the Mathematica code in [3] or the
SChroe. py script in this paper. However, given that it is the same method, four orders of magnitude is such a
big speedup that the claim that SChroe.py solves the Schrédinger equation efficiently is in my opinion not
warranted. The authors should mention this fact, that by implementing the shooting method efficiently in
Fortran or C and using a fixed mesh calculation, one can obtain four orders of magnitude speedup. Or they
can just add the dftatom’s timings (or of another similarly fast solver) as another column into Table I, assuming
that those timings are for a single fixed mesh calculation.

Error in equation: Equation (1) presents Schrédinger equation with reduced mass m, and the term 1/2. Then
the radial equation in (2) must also have the term 1/2. As it is now, the m in equation (2) is twice the m in
equation (1). As such, the authors should rename the min (1) e.g. to mu and clarify that mu=m/2. It is more
conventional to use mu, not m. Since the authors use m in their paper, when reproducing their results, it is
essential to use mu=m/2 in order to agree.

The graph of the wavefunction in Fig.1 b appears to be incorrectly normalized. Using the usual normalization,
the correct graph should look similar to the one in the cell [9] in [1], i.e. notice the different
magnitude/normalization.

The paper should also mention how SClib compares against other tools for creating Python wrappers like
Cython or Swig.

I noted the following typos/grammatical errors:

» “The functions are then available as a members of the library” -> “The functions are then available as
members of the library” (no “a”)

 in abstract: “conceading” -> “conceding”, but the sentence doesn’'t make sense, perhaps the authors
meant “compromise”?

» The code for SClib and example use are availible at -> available

« “once the paper appear online” -> “once the paper appears online”

« “With the goal of mimic the advantages of this script but without compromising in speed we have
developed SChroe.py,” -> “With the goal of mimicking the advantages of this script, but without
compromising speed, we have developed SChroe.py” (i.e. two commas missing, “mimicking” and no
“ip”

» “The Schrbédinger equation is the one the fundamental equations in physics” perhaps the authors
meant “one of the fundamental equations” ?

« “we will focus on the time-independent version which in natural units is given by* -> “we will focus on
the time-independent version which, in natural units, is given by”

« “If the relative velocity of between the quark and the antiquark” perhaps remove “between”?

« “the value of :math:E_{n, 1} correspond to an eigenvalue” -> corresponds

» “fulfills the condition of have one node” -> “fulfills the condition of having one node”

» “the standard method consist in to apply” perhaps “the standard method consist of applying” sounds
better

e “In general :math:y {n,1}(r) wil diverge except when :math:E {n,l} correspond to an
eigenvalue.” -> corresponds

And several formatting issues:

e Schr\"odinger doesn't render correctly, the authors have to write it as Schrédinger

« Fig.2: ref{cornell} doesn't render correctly. The same on the page 50.

« ref{coupled}, page 52 doesn’t render correctly

« section 3 has latex-preamble: DeclareMathOperator*{argmin}{arg,min} in the pdf.

After addressing the above issues, | think this paper can be accepted.

Ondrej Certik

CCS-2: Computational Physics and Methods
Los Alamos National Laboratory

LA-UR: ###

[1] Certik, O., Pask, J. E., & Vackaf, J. (2013). dftatom: A robust and general Schrodinger and Dirac solver for
atomic structure calculations. Computer Physics Communications, 184(7), 1777-1791.
doi:10.1016/j.cpc.2013.02.014

[2] ### This will be a link to the notebook at http://nbviewer.ipython.org/ ### For now the notebook is attached
as pdf.

[3] Lucha, W., & Schoberl, F. F. (1999). Solving the Schrédinger Equation for Bound States With Mathematica
3.0. International Journal of Modern Physics C, 10(04), 607-619. do0i:10.1142/S0129183199000450

To get a sense for relative speed and ease of use, let's reproduce Ref. [1] Table 1 using the available package
dftatom [2]."

Note: dftatom is working in Hartree atomic units, so we first need to convert the radial Schédinger equation
with reduced mass p (other than 1 in a.u.) into atomic units. This can be done by multiplying the potential by p
and then dividing the calculated energy by p.

Also note that the paper https://github.com/euroscipy/euroscipy_proceedings/pull/39 uses n’ (I use prime to
distinguish it from n used in this notebook) which always starts at 0 and counts the states for the given [, as is
the convention e.g. for harmonic oscillator. In atomic physics (e.g. in dftatom), on the other hand, the
convention isto start n at 1 and [is from 0 <! < n. The relationisn’ =n — 1 — 1.

[1] Lucha, W., Schéberl, F. F. (1999). Solving the Schrdodinger Equation for Bound States With Mathematica
3.0. International Journal of Modern Physics C, 10(04), 607—619. doi:10.1142/S0129183199000450

[2] Certik, O., Pask, J. E., Vackéa¥, J. (2013). dftatom: A robust and general Schrédinger and Dirac solver for
atomic structure calculations. Computer Physics Communications, 184(7), 1777-1791.
doi:10.1016/j.cpc.2013.02.014.

In [1]: %matplotlib inline
from math import sqrt
from timeit import default timer as clock
import matplotlib.pyplot as plt
from numpy import empty
from dftatom import (mesh exp, mesh exp deriv, solve radial eigenproblem,
atom lda, atom rlda)

In [2]: a = 2.7e6
rmin le-7

N = 5000

relat = 0

R = mesh _exp(rmin, rmax, a, N)

Rp = mesh exp deriv(rmin, rmax, a, N)

V_tot = R**2
mu = 0.5 # reduced mass
print "n-1-1 1 E"

for n in range(5):
for 1 in range(n):
E, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,
V _tot*mu, R, Rp, 0, relat, False, 0, 100)
print " %d % %10.6f" % (n-1-1, 1, E/mu)

1
=

E
.000000
.000000
.000000
.000000
.000000
.000000
15.000000

13.000000
11.000000
.000000

NORFROUIJdW

O N WORrRNOKFO-A
WNEHE ONFHFORFROO

(o)

This agrees exactly with Table 1. Let's reproduce Table 2 in [1]:

In [3]: Z2=1
V tot = -Z/R
mu = 0.5
print "n 1 -E/2"
for n in range(3):
for 1 in range(n):
E, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,
V_tot*mu, R, Rp, Z, relat, True, -100, 0)
print "%d %d %10.6f" % (n, 1, -E/mu)

n 1 -E/2
1 0 0.250000
2 0 0.062500
2 1 0.062500
Again, this agrees exactly. Finally, let's reproduce the Table 1

https://github.com/euroscipy/euroscipy_proceedings/pull/39:

In [4]:

< X QO 3

mu =

n-1-1

=

a/R + k*R

m/2 # reduced mass
print "n-1-1 1 E time[s]"
for n in range(25):

for

e~

1 in range(n):

if 1 !'= 1: continue

if n-1-1 not in [0, 1, 2, 20]: continue

tl = clock()

E, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,
V tot*mu, R, Rp, 0, relat, False, 0, 100)

t2 = clock()

print " %2d %d %10.5f %.2f" % (n-1-1, 1, E / mu, t2-tl)

E time[s]
2.15789 0.01
3.10952 0.01
3.93850 0.01

13.59946 0.01

The energies agree to all printed digits.

Let's get more accurate timing for the n-1-1=20 case:

In [5]:

In [6]:
Out[e]:

%%timeit

1
n
E

1

20+1+1

, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,

V_tot*mu, R, Rp, 0, relat, False, 0, 100)

100 loops, best of 3: 9.56 ms per loop

E/mu
13.599463957910984

Let's reproduce the Fig. 1:

In [7]:

Out[7]:

In [8]:
Out[8]:

1
n
E

E/mu
3.109521596201148

E/mu
3.109521596201148

1

1+1+1

, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,

V_tot*mu, R, Rp, 0, relat, False, 0, 100)

In [9]: plt.plot(R, [0]*len(R), "k-")

plt.plot(R, P, "b-")
plt.xlim([0, 18])
plt.ylim([-1.5, 1.5])
plt.xlabel("r [a.u.]")
plt.ylabel("P(r)")
plt.title("$n-1-1=1%, $1=1%")
plt.show()

15 .'.l—.!'l—lzlrl.!'zl

10}

05

0.0
_05 - \/

=10k

Pir)

-1.5

0 2 4 & 8 10 12 14 16 13
ra.u.]

The difference in magnitude is due to the fact that dftatom returns normalized wavefunctions. Let's also plot
the n-1-1=20 wavefunction:

In [10]: 1
20+1+1
, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,

V_tot*mu, R, Rp, 0, relat, False, 0, 100)

1
n
E

E/mu
Out[10]: 13.599463957910984

In [11]: plt.plot(R, [0]*len(
plt.plot(R, P, "b-")
plt.xlabel("r [a.u.]")
plt.ylabel("P(r)")
plt.title("$n-1-1=20%, $1=1%")
plt.show()

R), "k-")

0.4 .'.ITI—IZE'D',I:II

03

02

01

Pir)
=

) 10 20 30 40
riau.]

Optimal Mesh
One can obtain a more efficient mesh following the procedure in [xxx].
One obtains:

a=5
N=1500
rmin=1le-2
rmax=50

Let's rerun the benchmark with this mesh:

In [17]: a =5
rmin = le-2

rmax = 50

N = 1500

R = mesh _exp(rmin, rmax, a, N)

Rp = mesh _exp deriv(rmin, rmax, a, N)
m=1.

a=20.1

kK = 0.5*m**2

V_tot = a/R + k*R

mu = m/2 # reduced mass

print "n-1-1 1 E time[s]"

for n in range(25):
for 1 in range(n):

if 1 != 1: continue
if n-1-1 not in [0, 1, 2, 20]: continue
tl = clock()
E, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,
V_tot*mu, R, Rp, 0, relat, False, 0, 100)
t2 = clock()
print " %2d %d %10.5f %.2f" % (n-1-1, 1, E / mu, t2-tl)
n-1-1 1 E time[s]
0o 1 2.15789 0.00
1 1 3.10952 0.00
2 1 3.93850 0.00
20 1 13.59948 0.00
In [18]: %%timeit
1=1
n = 20+1+1
E, P, Q = solve radial eigenproblem(0.0, n, 1, -1, le-11, 100,

V_tot*mu, R, Rp, 0, relat, False, 0, 100)

100 loops, best of 3: 2.81 ms per loop

In [19]: E/mu
Out[19]: 13.599475459369614

So the accuracy didn't change, but as we can see for the n-1-1=20 case, the calculation got from 9.4ms to
2.8ms, which is over 3x faster.

Compared to the Schroe. py, dftatomis now 32.13*1000/2.8=11475 more than 10,000 times faster.

